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Heard at the Second Harmonic Oscillator Conference:

"There are no harmonic oscillators in Nature." K.B. Wolf

"Tell that to the quantum opticians/" M.M. Nieto

Abstract

In this talk we re-examine three important properties of quantum laser systems:

(i) Photon counting statistics (ii) Squeezing (iii) Signal-to-Quantum Noise Ratio.

None of these phenomena depends on the choice of hamiltonian; indeed, we analyze them
initially without restriction to any specific form of the commutation relations.

1 Introduction

Although most of the recent motivation for deforming the bosonic canonical commutation relations

has been derived from considerations of theory, in this note we should like to take a different

tack. To what extent does the assumption of modified (deformed) commutation relations lead to

new, even non-intuitive, physical predictions? Ideally, such predictions should not be based on

the choice of a specific hamiltonian, due to the additional ambiguity involved in such a choice;

unfortunately, this rules out delicate tests involving frequency measurements, some of the most

refined of physics. And, initially at any rate, it would be of interest to embark on the analysis

without resorting to a specific form of deformed commutation relations, although ultimately any

quantitative result will depend on a specific set.

With this minimalist philosophy in mind, let us consider the ingredients necessary for a theory

of quantum photons.. First of all, we need an operator a which annihilates photons one at a time;

and its hermitian conjugate a t which creates them. We also postulate a number operator N

which counts photons; NIn ) = n[n). The set {In);n = 0,..., } provides a denumerable basis

for the Hilbert space (Fock space). Thus the number operator N satisfies IN, a] = -a, just as

for the usual (non-deformed) boson operators. Necessarily, since the vacuum state 10) is defined

to have no photons, NI0) = 0 and a]0 >= 0. Clearly the combination ata does not change the
number of photons, so it commutes with N and must be a function of N. We write this function

conventionally as [N] ( read "box N'). Thus we have

ata = [N].

1Talk presented at the Second Conference on Harmonic Oscillators, Cocoyoc, Mexico, 23-25 March, 1994.
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Clearly aa* is also a function of N; from evaluation of

a(ata)ln >= (aat)aln > (1)

this function may easily be seen to be

aa t = [N + 1].

The generalized commutation relations may therefore be written

aa t - ata = [N + 1] - [N] (2)

where [ ]is some (analytic) function.
For example, the two most commonly used deformations of the canonical commutation rela-

tions which have been considered are:

(a) "Maths" Boson:
aa t - qa*a = I. (3)

This was introduced by Arik and Coon [1], who also described the corresponding q-coherent states.

In the commutator form, this may be written as

aa t _ ata = qN (4)

where q is some real parameter. We refer to this deformed boson as a "Maths" (or M-) boson

as the "basic" numbers (cf. Equation (15)) and special functions, q-functions, associated with

this operator have been investigated in the mathematical literature for over 150 years; see, for

example, [2].

(b) "Physics" Bosom
aa t _ qata = q-N.

In the commutator form, this may be written as

aa t - ata = cosh(2N + 1)s/cosh s

(5)

(6)

where q = exp(2s).
This deformation was introduced [3, 4] in order to provide a realization of the "quantum

groups" [5] (non-cocommutative Hopf algebras) which arise naturally in the solution of certain

lattice models [6].

An alternate formulation of Equation 2 is [7]

aa t- f(N)ata = 1 (7)

with the correspondence [S]

[hi = 1 + f(n-1) + f(n-1)f(n-2) + f(n-1)f(n-2)f(n-3)

+... + f(,_-1)f(n-2).., f(2)f(1) (8)

f(n- 1)!
= k=0 7( )i "

(9)
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Following the pioneering work of Jackson, we may introduce a generalized calculus related to

our general deformation characterized by the analytic function [ ]. We define an operator Dx
such that

-- x . (10)
X

This acts as a generalized derivative operator, e.g.

Dxx" -[n]x"-'. (11)

The eigenfunction E(x) of D: given by

oo Xn

E(x) = y_ [-_].v" (12)
n=O

is well-defined provided the function [ ] satisfies appropriate convergence criteria. This plays the

role of a generalized exponential function.

A related generalized quantum optics may be described [8], starting with the generalized

coherent states [A) defined to satisfy

aJA) = $J$). (13)

Since a E($at)JO) = $E($af)J0), we can use E(x) to define analogues of coherent states as nor-

malized eigenstates of the generalized annihilation operator.

[A)= {E(IAI2)}- E(Aat)I0). (14)

The q-coherent states associated with the special cases of the bosons described by Equation 3

and Equation 5 have been investigated by several authors e.g. [4, 9]. For these two special cases,

[n] is given by

_ M-case[n] = q'_--q-'_ (15)
P-case

q_q-1

We now consider in turn each of three phenomena in quantum optics from our new generalized

viewpoint:

• Photon counting statistics

• Squeezing

• Signal-to-Quantum Noise Ratio.
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2 Photon Counting Statistics

The states of an ideal laser are conventionally described by Glauber coherent states [10]. However,

real lasers do not strictly adhere to this description; in particular, the photon number statistics

of real lasers are not exactly Poissonian [11]. Furthermore, various non-linear interactions give

rise to well-defined deviations from the Poissonian distribution [12]. Recently, deformations of

the commutation rules of boson operators have been considered as models for physical systems

which deviate from the ideal cases [13]. We approach the problem of the "real" laser in this latter

phenomenological spirit, and show that indeed a coherent state of the deformed boson (q-coherent

state) provides a more accurate model of a non-ideal laser, at least as far as the photon number

statistics is concerned.

An ideal laser may be described as a normalized eigenstate of the photon annihilation operator

a, where a and its hermitian conjugate a t (photon creation operator) satisfy

[a, a t] - aat - ata = I. (16)

The normalized eigenstate satisfying alcr >= alcr > is easily seen to be

O n

nmO

The number eigenstates are In >, and this coherent state gives rise to the Poisson distribution

la[2" (18)
P, = [ < n[a > [2 = exp (-I_1_) .!

The factorial moments of this distribution are

<. >= I_1_

< n(n- 1) >= I_1_

< n(n - l)(n - 2) >= I_1_

etc., from which the variance is found to be

_2 =< nZ > _ < n >2= lal2

A convenient measure of the deviation of a distribution from the Poisson distribution is the Mandel

parameter
tr 2 < n(n- 1) >

_- I= <n>
<n> <n>

which vanishes for the Poisson distribution, is positive for a super-Poissonian distribution, and

negative for a sub-Poissonian distribution.

In order to enter into the phenomenological spirit of our approach, and to compare with the

experimental data, we need to specify the form of the commutation relations Equation 2; that

is, specify a choice of the function [ ]. It is sufficient for our purposes here to compare the

distributions arising from the M and P forms Equation 3 and Equation 5 respectively. One can
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easily check that the P-type q-Poissondistribution is sub-Poissonian(Q _<0) for all valuesof
q, reducing to the conventional Poisson distribution for q = 1. On the other hand, the M-type

q-Poisson distribution is super-Poissonian for q < 1 and sub-Poissonian for q > 1.

The q-Poissonian q-factorial moments are < [n] >= [a[ 2, < [n][n - 1] >= [a[ 4, etc.

To evaluate the average number of photons and the Mandel parameter for the q-Poisson dis-

tribution we note that the corresponding factorial moments satisfy

<n> ---- x OE,(x)
Eq(z) Oz _=J_,l"

x _ i)2Eq(z)]< .(.- 1) > = Eq(x) x=j.12

These expressions may be used to provide estimates of the q-Poissonian parameters q and ]al _

corresponding to a distribution which is specified in terms of given values of < n > and Q. The

values of q corresponding to given pairs of values of < n > and Q , and the corresponding values

of I_l _ were tabulated in reference [14].

For small deviations from a Poissonian distribution we define q = e-° and obtain in the M-case

2Q
3--

<n>

which is positive (i.e., q < 1) for a super-Poissonian distribution and negative (q > 1) for a
sub-Poissonian distribution. In the P-case we obtain

s2 = _ 3Q

so that only the sub-Poissonian distribution (Q < 0) corresponds to a real value of s (and q).
Another useful result is

p = lim Q - (19)
<,>--,0 < n > 2

q 4- q--l- - 1 P-case

In the M-case the range of p is -1 < p < 1, corresponding to a sub-Poissonian distribution for

p < 0 and to a super-Poissonian distribution for p > 0. In the P-case the range of p is -1 < p < 0,

exhibiting only a sub-Poissonian distribution.

From Equation (19) we obtain

{ 1+i-_p M-case

q = (20)

+ P-case(1 4- p)_ - 1

Using the three highest peaks in the experimental data pertaining to the photon statistics of

a He-Ne laser just above threshold t15] we obtain _ = _] = 1.319, which in the M-case is a
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quadratic equation in q, yielding q = 0.747. Note that the corresponding equation for the P-case

can be shown to rule out the P-boson as a model of this system since for all real and positive q

the inequality _] > 23-holds.
If one compares the best fit for the M-boson q-coherent state against the experimental data

[15] and the ideal (Glanber) coherent state, one finds that the value of q corresponding to the

best fit is 0.749, in ver_ close agreement with the value estimated above using the highest three

peaks. It is not surprising that a better fit is obtained with the q-coherent state, due to the extra

parameter q. However, certain constraints are satisfied (for example, the convergence criterion for

the M-type q-exponential function demands that (1 - q)]_l 2 _ 1 and is satisfied here) and, as we

have already remarked, the P-boson model is ruled out.

Experimental studies of the photon statistics of a laser at different intensities above the thresh-

old were reported in refs. [16] and [17]. Since super-Poissonian statistics is exhibited, only M-type

analysis is warranted. In both cases it is found that for counting times short relative to the inten-

sity correlation time the distributions agree with q-Poissonian statistics, the value of q increasing
from a value which could be close to zero at threshold to a value close to unity (Poissonian distri-

bution) for intensities about an order of magnitude higher than the threshold intensity. At twice

the threshold int_ensity values of q ranging between roughly 0.3 and 0.8 were obtained from the

different sets of experimental data.

Another set of experimental data, exhibiting a sub-Poissonian distribution, involves the pho-

tons emitted by single-atom resonance fluorescence [18]. Using the data for Po, P1, P2 we obtained

in Reference [14] qM = 2.44 or qp = 3.12. This is in agreement with the estimate for qM obtained

using Equation (20) and the data reported in [18], < n >= 6.23.10 -3 and Q'= -2.52-10 -3, from

which qM = 2.36.

The examples of this section illustrate cases from quantum optics where a more accurate model

of a physical system may be obtained by use of quantum group ideas.

3 Squeezing

The electromagnetic field components x and p are given by

1 1

x = _(a + a t) and p = _---_(a - at).

As usual, we define the variances (_x x) and (A p) by

(Ax) 2 = (x 2) - (x) :z and (Ap)2 = (p'_) _ (p)2.

(21)

(22)

In the vacuum state

and so

1 and p)0- 1 (23)(Z x)0-

1 (24)(A x)0(ap)0=

The commutation relation Equation (16) for a and a t leads to the following uncertainty prin-

ciple
1

(_z)(_p) > _l([x,p])l = _. (25)
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Thus the vacuum state attains the lower bound for the uncertainty, as do the coherent states.

While it impossible to lower the product (A x)(A p) below the vacuum uncertainty value, it is

nevertheless possible to define squeezed states [19] for which (at most) one quadrature lies below

the vacuum value, i.e.

1 1 (26)
(Ax) < (Ax)0 = _ or (z_p) < (LXp)0 = _.

If we now consider the generalized bosonic operators given by (2), using the same definitions

for the the field quadratures, x and p, as in (21) we find that, just as in the conventional case, the
1 is a lower bound for all number states.vacuum uncertainty product (A z)0(A P)0 =

However, unl'ike the conventional case, it is not a global lower bound.

Consider the quadrature values in eigenstates of the generalized annihilation operator.

Then

and

(x)_ = (h I (a t + a)l,X ) = _(A + A)
(27)

(=2)_, = (,Xl2((at) 2+ a2+ ata + aat) I,X) (28)

= I((X + _)_ + 1-- _j,_,I,Xl_} (29)

where

_f,x = 1 - (f(N + 1))_,. (30)

If we choose 0 < f(n) < 1, then it can be shown that el,xI,XI 2 e (0, 1) for A within the radius

of convergence of the generalized exponential (12).

Hence

(Ax),_ = 111 - _,_,1_12}. (31)

Evaluating the variance for the other component, we find that (A p)_, = (A x)_, so

1 1

(A:_)_,(Ap)x---- _{1-ef,xl_l 2} < 7"
(32)

However, it can also be shown that

1 l[([z, pl)xl
_{1 - _:,_,1,_1_} -

(33)

SO

(m =)_(/Xp)_,-- 21-1([_,pl)xl (34)
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Thus we see that these generalized q-coherent states satisfy a restricted form of the Minimum

Uncertainty Property (M.U.P.) of the conventional coherent states. Additionally we see that there

is a general noise reduction in both quadratures compared to their vacuum value. In conventional

coherent states there is no noise reduction relative to the vacuum value. In conventional squeezed

states, there is noise reduction in only one component.

We can apply the preceding analysis to the two usual forms of q-deformed bosons:

(a) 'Physics' q-bosons

First consider the q-bosons of Equation 5. The deformed commutation relation

aa t _ q ata = q-N. (35)

can be rewritten [20] as

where f(N) = q(qN+l)"

aa t- f(N)ata = 1 (36)

In this case, for normalizable eigenstates, the function ¢I,_ is negative and so simultaneous

two-component noise reduction does not take place. This is in agreement with the findings of

Katriel and Solomon [21] and Chiu et al [22]. However, it can be shown that ordinary squeezing

i.e. noise reduction in one component compared to the vacuum (with a corresponding noise am-

plification in the other component) does take place [23, 24].

(b) 'Maths' q-bosons

We now consider the q-boson described by Arik and Coon [1].
deformed commutation relation

aa t - q at a = 1

For q E (0, 1), the Jackson q-exponential Eq(IAI2) converges, provided

 qlAI2 = (1 - q)l, l < 1.

Given this condition on A, we have normaiizable q-analogue coherent states satisfying (13) in
which

I i (38){1-eqlXl2} < 2"

Hence, for this type of q-boson, we do obtain noise reduction in both quadratures with respect
to the vacuum value.

which is characterised by the

(37)

4 Signal-to-Quantum Noise Ratio

In a classic paper, Yuen [19] showed that for a radiation field of photons the maximum signal-to-

quantum noise ratio p for fixed energy has the value 4n,(n, + 1), where n, gives the upper limit on

the number of photons in the signal (effectively a maximum power per unit frequency constraint).
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The only mathematical input to this result consisted of the canonical commutation relations for

the photon annihilation operator a, namely;

[a,a t] = 1 (39)

with the photon number operator given by N = ata.

The hermitia_ components x, p of the electromagnetic field corresponding to our generalized

photons of Equation 2 (which we now write as a_, % to distinguish from the conventional ones)
satisfy

[zq, pq] = i([N + 1]- [N]) (40)

which reduces to the canonical commutation relation [x, p] - i when [N] = N.

We now consider a state, which we write as <, >, although everything which follows applies

equally to a general state described by a density function. Introducing the hermitian operators

X_xq--<Xq>, P_-pq-<pq>,

the quantum dispersion (quantum noise) in each of the components is measured by the quantities

(A%)2 =< X 2 > and (Ape) 2 =< p2 >. The positivity of the number < A(t)A*(t) > for all t,

where A(Q - tX + iP, leads immediately to the modified uncertainty principle

1

(Axq)2(Apq) 2 > _ < [N+ 1]-[N] >2. (41)

This uncertainty product exceeds the conventional value of ¼ in the "Physics" case (5), and in the
"Maths" case (3) for q > 1.

The signal-to-quantum noise ratio

=< >2/(Azq)2

must be maximized subject to the constraint

< a_aq > _< [n,] (42)

where ns is the maximum number of q-photons for the frequency under consideration, and in-

equality (41) above. We may rewrite constraint (42) as

<Xq>2+<pq>2+(Az,)2+(Apq)2-<[N+ll-[N]> < 2[no] (43)

where we have substituted

2>=< >2 < >=< p. >2+(Zxp,)2.< Xq

Consideration of (43) leads us to infer that it is favourable to use all the available energy; that

is, < N >= no: and to use it in the x-component alone, so that < pq >= 0. The inequality thus

becomes the equation

< Zq >2 +(Azq)2 + (Ap,)_ = [no] + [n° + 11. (44)
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It is a straightforward exercise in the calculus to show that the ratio pq is maximized, subject to

the constraints (41) and (44), at a value

pq = 4[n.l[n. + l]/([n, + 11- [no])2. (45)

Given two types of "photon" described by [ ]1 and [ ']2, it is a straightforward exercise in

inequalities to show that the corresponding signal-to-quantum noise ratios pl, p2 satisfy

pa <P2 if [n+l]l [n+112- [nh

Taking [n]2 = n ("ordinary" photons) and [n l, as the q-photons defined by Equations (3) and (5)

in turn, we obtain:

>- p >--pP - p,*'_>l

on comparing with Yuen's result for the conventional case

p = 4n°(n. + 1). (46)

Therefore states based on the usual q-photons Equation (5), and Equation (3) for q >_ 1, (which

are the more physical cases satisfying the conventional uncertainty principle) will not lead to an

enhanced signal-to-quantum noise ratio over the conventional photon case.

5 Conclusions

In this talk we have given three examples where we are able to model physically observable

properties of real photons by means of deformed photons satisfying very general deformations of

the canonical commutation relations. The viewpoint we have adopted is the phenomenological one;

we do not assume that "real" photons satisfy other than the conventional commutation relations.

Rather, we have shown that simple models involving "dressed" photons, satisfying very general

constraints, may be invoked to describe observed, and sometimes non-intuitive, phenomena.

This by no means addresses the still open question as to whether deformed commutation

relations describe real particles, whatever that means.
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